38 research outputs found

    Impaired Spleen Formation Perturbs Morphogenesis of the Gastric Lobe of the Pancreas

    Get PDF
    Despite the extensive use of the mouse as a model for studies of pancreas development and disease, the development of the gastric pancreatic lobe has been largely overlooked. In this study we use optical projection tomography to provide a detailed three-dimensional and quantitative description of pancreatic growth dynamics in the mouse. Hereby, we describe the epithelial and mesenchymal events leading to the formation of the gastric lobe of the pancreas. We show that this structure forms by perpendicular growth from the dorsal pancreatic epithelium into a distinct lateral domain of the dorsal pancreatic mesenchyme. Our data support a role for spleen organogenesis in the establishment of this mesenchymal domain and in mice displaying perturbed spleen development, including Dh +/−, Bapx1−/− and Sox11−/−, gastric lobe development is disturbed. We further show that the expression profile of markers for multipotent progenitors is delayed in the gastric lobe as compared to the splenic and duodenal pancreatic lobes. Altogether, this study provides new information regarding the developmental dynamics underlying the formation of the gastric lobe of the pancreas and recognizes lobular heterogeneities regarding the time course of pancreatic cellular differentiation. Collectively, these data are likely to constitute important elements in future interpretations of the developing and/or diseased pancreas

    Endothelial dysfunction of bypass graft: Direct comparison of In Vitro and In Vivo models of ischemia-reperfusion injury

    Get PDF
    BACKGROUND: Although, ischemia/reperfusion induced vascular dysfunction has been widely described, no comparative study of in vivo- and in vitro-models exist. In this study, we provide a direct comparison between models (A) ischemic storage and in-vitro reoxygenation (B) ischemic storage and in vitro reperfusion (C) ischemic storage and in-vivo reperfusion. METHODS AND RESULTS: Aortic arches from rats were stored for 2 hours in saline. Arches were then (A) in vitro reoxygenated (B) in vitro incubated in hypochlorite for 30 minutes (C) in vivo reperfused after heterotransplantation (2, 24 hours and 7 days reperfusion). Endothelium-dependent and independent vasorelaxations were assessed in organ bath. DNA strand breaks were assessed by TUNEL-method, mRNA expressions (caspase-3, bax, bcl-2, eNOS) by quantitative real-time PCR, proteins by Western blot analysis and the expression of CD-31 by immunochemistry. Endothelium-dependent maximal relaxation was drastically reduced in the in-vivo models compared to ischemic storage and in-vitro reperfusion group, and no difference showed between ischemic storage and control group. CD31-staining showed significantly lower endothelium surface ratio in-vivo, which correlated with TUNEL-positive ratio. Increased mRNA and protein levels of pro- and anti-apoptotic gens indicated a significantly higher damage in the in-vivo models. CONCLUSION: Even short-period of ischemia induces severe endothelial damage (in-vivo reperfusion model). In-vitro models of ischemia-reperfusion injury can be limitedly suited for reliable investigations. Time course of endothelial stunning is also described

    Neonatal Fc receptor is involved in the protection of fibrinogen after its intake in peripheral blood mononuclear cells

    No full text
    Background: Fibrinogen is a central player in the blood coagulation cascade and one of the most abundant plasma proteins. This glycoprotein also triggers important events (e.g., cell spreading, the respiratory burst and degranulation) in neutrophil cells via a \u3b1 M \u3b2 2 integrin-mediated binding to the cell surface. Yet, little is known about the interaction of fibrinogen with leukocytes other than neutrophils or stimulated monocytes, although high amounts of fibrinogen protein can also be found in lymphocytes, particularly in T-cells. The aim of the present work is to unveil the dynamics and the function of fibrinogen intake in T-cells. Methods: Using the Jurkat cell line as a T-cells model we performed fibrinogen intake/competition experiments. Moreover, by means of a targeted gene knock-down by RNA-interference, we investigated the dynamics of the intake mechanism. Results: Here we show that (i) fibrinogen, although not expressed in human peripheral blood mononuclear cells, can be internalized by these cells; (ii) fibrinogen internalization curves show a hyperbolic behavior, which is affected by the presence of serum in the medium, (iii) FITC-conjugated fibrinogen is released and re-internalized by adjacent cells, (iv) the presence of human serum albumin (HSA) or immunoglobulin G (IgG), which are both protected from intracellular degradation by the interaction with the neonatal Fc receptor (FcRn), results in a decreased amount of internalized fibrinogen, and (v) FcRn-knockdown affects the dynamics of fibrinogen internalization. Conclusions: We demonstrated here for the first time that fibrinogen can be internalized and released by T-lymphocyte cells. Moreover, we showed that the presence of serum, HSA or IgG in the culture medium results in a reduction of the amount of internalized fibrinogen in these cells. Thus, we obtained experimental evidence for the expression of FcRn in T-lymphocyte cells and we propose this receptor as involved in the protection of fibrinogen from intracellular lysosomal degradation
    corecore